TP53 Modulates Oxidative Stress in Gata1+ Erythroid Cells

نویسندگان

  • Ashley C. Kramer
  • Jenna Weber
  • Ying Zhang
  • Jakub Tolar
  • Ying Y. Gibbens
  • Margaret Shevik
  • Troy C. Lund
چکیده

Metabolism of oxidative stress is necessary for cellular survival. We have previously utilized the zebrafish as a model of the oxidative stress response. In this study, we found that gata1-expressing erythroid cells contributed to a significant proportion of total-body oxidative stress when animals were exposed to a strong pro-oxidant. RNA-seq of zebrafish under oxidative stress revealed the induction of tp53. Zebrafish carrying tp53 with a mutation in its DNA-binding domain were acutely sensitive to pro-oxidant exposure and displayed significant reactive oxygen species (ROS) and tp53-independent erythroid cell death resulting in an edematous phenotype. We found that a major contributing factor to ROS was increased basal mitochondrial respiratory rate without reserve. These data add to the concept that tp53, while classically a tumor suppressor and cell-cycle regulator, has additional roles in controlling cellular oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sumoylation Regulates Interaction of FOG1 with C-terminal-binding Protein (CTBP)*

Erythropoietic and megakaryocytic programs are specified from multipotential progenitors by the transcription factor GATA1. FOG1, a GATA1-interaction partner, is critical for GATA1 function in several contexts by bringing multiple complexes into association with GATA1 to facilitate activation or repression of target genes. To further elucidate regulation of these associations by cellular and ex...

متن کامل

Nkx2-5 represses Gata1 gene expression and modulates the cellular fate of cardiac progenitors during embryogenesis.

BACKGROUND Recent studies suggest that the hematopoietic and cardiac lineages have close ontogenic origins, and that an early mesodermal cell population has the potential to differentiate into both lineages. Studies also suggest that specification of these lineages is inversely regulated. However, the transcriptional networks that govern the cell fate specification of these progenitors are inco...

متن کامل

Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis.

The transcription factor Gata1 is expressed in several hematopoietic lineages and plays essential roles in normal hematopoietic development during embryonic stages. The lethality of Gata1-null embryos has precluded determination of its role in adult erythropoiesis. Here we have examined the effects of Gata1 loss in adult erythropoiesis using conditional Gata1 knockout mice expressing either int...

متن کامل

Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway

Nuclear factor- (erythroid-derived 2) like 2 (NFE2L2, NRF2) is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN...

متن کامل

Homotypic signalling regulates Gata1 activity in the erythroblastic island.

Gata1 is a transcription factor essential for erythropoiesis. Erythroid cells lacking Gata1 undergo apoptosis, while overexpression of Gata1 results in a block in erythroid differentiation. However, erythroid cells overexpressing Gata1 differentiate normally in vivo when in the presence of wild-type cells. We have proposed a model, whereby a signal generated by wild-type cells (red cell differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017